Matematisk-fysiske Skrifter
udgivet af
Det Kongelige Danske Videnskabernes Selskab
Bind 1, nr. 7

Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 7 (1959)

THE FUNDAMENTAL FREQUENCIES OF aLL THE DEUTERATED BENZENES

APPLICATION OF THE COMPLETE ISOTOPIC RULE TO NEW EXPERIMENTAL DATA

BY
SVEND BRODERSEN and A. LANGSETH

København 1959

Det Kongelige Danske Videnskabernes Selskab udgiver følgende publikationsrækker:
 The Royal Danish Academy of Sciences and Letters issues the following series of publications:

Bibliographical Abbreviation
Oversigt over Selskabets Virksomhed (8°) Overs. Dan. Vid. Selsk.
(Annual in Danish)

Historisk-filosofiske Meddelelser (8°)
Historisk-filosofiske Skrifter (4°)
(History, Philology, Philosophy, Archeology, Art History)

Matematisk-fysiske Meddelelser (8°) Matematisk-fysiske Skrifter (4) (Mathematics, Physics, Chemistry, Astronomy, Geology)

Biologiske Meddelelser (8°) Biol. Medd. Dan. Vid. Selsk.
Biologiske Skrifter (4°)
(Botany, Zoology, General Biology)

Hist. Filos. Medd. Dan. Vid. Selsk. Hist. Filos. Skr. Dan. Vid. Selsk

Mat. Fys. Medd. Dan. Vid. Selsk Mat. Fys. Skr. Dan. Vid. Selsk.

Biol. Skr. Dan. Vid. Selsk.

Selskabets sekretariat og postadresse: Dantes Plads 5, København V.
The address of the secretariate of the Academy is:
Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, Köbenhavn V, Denmark.

Selskabets kommissionær: Ejnar Munksgaard’s Forlag, Narregade 6 København K.

The publications are sold by the agent of the Academy:
Ejnar Munksgaard, Publishers,
6 Nörregade, Köbenhavn K, Denmark.

Matematisk-fysiske Skrifter udgivet af

Det Kongelige Danske Videnskabernes Selskab

Bind 1, nr. 7

THE FUNDAMENTAL FREQUENCIES OF all The deuterated benzenes

APPLICATION OF THE COMPLETE ISOTOPIC RULE TO NEW EXPERIMENTAL DATA

BY
SVEND BRODERSEN and A. LANGSETH

København 1959
i kommission hos Ejnar Munksgaard

Synopsis.

The complete isotopic rule discussed previously (Mat. Fys.Skr. Dan.Vid.Selsk. 1, no. 5 (1958)) is used to calculate all the fundamental frequencies of the various partly deuterated benzenes from those of benzene- d_{0} and benzene- d_{6}. The calculated frequencies are compared with new experimental values obtained in this laboratory.

All non-planar frequencies are given by strictly valid rules. In order to calculate the planar frequencies it is necessary to introduce an approximation based on the separation of high and low frequencies. No correction for anharmonicity is required. A detailed discussion is given of the setting up of the rules, especially of the approximate ones.

The agreement between calculated and observed frequencies is very satisfactory. Frequencies calculated from strictly valid rules usually agree within $0-3 \mathrm{~cm}-1$), those calculated from approximate rules within $0-10 \mathrm{~cm}-1$.

A first order approximation is proposed and shown to be of great value for surveying the changes in vibrational frequencies caused by changes in the isotopic substitution.

Introduction.

As the initial stage to a calculation of the complete, harmonic potential function of the benzene molecule it was felt desirable to set up all isotopic rules connecting the vibrational frequencies of its various deuterated species. As the complete harmonic potential function contains 34 constants only, whereas the 13 different H-D-isotopic benzenes furnish a total number of 360 fundamental frequencies determined by these constants, it follows that there must exist quite a considerable number of interrelations between these fundamentals. By setting up these rules one gets very valuable information about which of the isotopic molecules supply new and independent data concerning the potential function.

The consideration of this problem resulted in the establishment of a "complete isotopic rule" which has previously been proposed and its validity demonstrated for one set of isotopic molecules, viz. $\mathrm{C}_{6} \mathrm{H}_{6}$, sym $-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{D}_{3}$, and $\mathrm{C}_{6} \mathrm{D}_{6}{ }^{1}$. In a recent paper ${ }^{2}$ (in the following referred to as I) we have discussed the theory of this rule and have considered the general conditions for its applicability also to other isotopic molecules than the benzenes. As a demonstration the rule was applied to the deuterated species of acetylene and ethylene.

The scope of the present paper is to discuss - on the basis of the theory given in I-the setting up of the rule and its application to the various partly deuterated benzenes. All the fundamental frequencies of these isotopic molecules have been calculated and the results are compared with new experimental values.

Finally a first-order approximation will be discussed. This is shown to be very useful for surveying the changes in vibrational frequencies caused by isotopic substitutions.

Setting Up of the Rules.

It is considered as definitely proved that the benzene molecule has $D_{6 h}$ symmetry. Hence the symmetries of the various deuterated molecules are those given in Table 1. Following Langseth and Lord ${ }^{3}$ the two different $C_{2 v}$ symmetries, arising acording as the two-fold axis is either passing through two para carbon atoms or is oriented

[^0]perpendicular to this direction, are denoted $C_{2 v}$ respectively $C_{2 v}^{*}$. In Table 1 is further given the distribution of the fundamental vibrations among the various symmetry classes. The fundamentals are numbered according to $W_{\text {ilson }}{ }^{1}$ and Langseth and Lord ${ }^{2}$. The component of an originally degenerate vibration which preserves a twofold axis passing through para carbon atoms is denoted by 'a' and the other component by 'b'. The hydrogen (deuterium) stretching vibrations are indicated by use of a heavy type.

Table 1. Symmetries of the deuterated benzenes and of their fundamentals.

	$D_{6 h}$	$D_{3}{ }^{\prime}$		$D_{2 h}$		$C_{2 v}$		$C_{2 v}^{*}$		C_{s}	
$-\mathrm{d}_{0},-\mathrm{d}_{6}$		sym- d_{3}		$\mathrm{p}-\mathrm{d}_{2}, \mathrm{p}-\mathrm{d}_{4}$		$\begin{gathered} -\mathrm{d}_{1},-\mathrm{d}_{5} \\ \mathrm{~m}-\mathrm{d}_{2}, \mathrm{~m}-\mathrm{d}_{4} \\ \text { vic- } \mathrm{d}_{3} \end{gathered}$		o-d ${ }_{2}, \mathrm{o}-\mathrm{d}_{4}$		as-d ${ }_{3}$	
$A_{1 g}$ $B_{1 u}$	1, 2.	A_{1}^{\prime}	$\begin{gathered} 1,2, \\ 12,13, \end{gathered}$	$A_{1 g}$	$\begin{gathered} 1,2, \\ 6 \mathrm{a}, \mathbf{7} \mathrm{a}, \\ 8 \mathrm{a}, 9 \mathrm{a} . \end{gathered}$	A_{1}	$\begin{gathered} 1,2, \\ 6 \mathrm{a}, \mathbf{7} \mathrm{a}, \\ 8 \mathrm{a}, 9 \mathrm{a}, \\ 12,13, \\ 18 \mathrm{a}, 19 \mathrm{a}, \\ 20 \mathrm{a} . \end{gathered}$	A_{1}	$\begin{gathered} 1,2, \\ 6 \mathrm{a}, \mathbf{7} \mathrm{a}, \\ 8 \mathrm{a}, 9 \mathrm{a}, \\ 14,15, \\ 18 \mathrm{~b}, 19 \mathrm{~b}, \\ 20 \mathrm{~b}, \end{gathered}$	A^{\prime}	$\begin{gathered} 1,2, \\ 3, \\ 6 \mathrm{a}, 6 \mathrm{~b}, \\ 7 \mathrm{a}, 7 \mathrm{~b} . \\ 8 \mathrm{a}, 8 \mathrm{~b}, \\ 9 \mathrm{a}, 9 \mathrm{~b}, \\ 12,13, \\ 14,15, \\ 18 \mathrm{a}, 18 \mathrm{~b}, \\ 19 \mathrm{a}, 19 \mathrm{~b}, \\ 20 \mathrm{a}, 20 \mathrm{~b}, \end{gathered}$
E_{g}^{+}	$\begin{aligned} & 6,7 . \\ & 8,9 . \end{aligned}$	E^{\prime}	$\begin{gathered} \text { 6, 7, } \\ 8,9 \\ 18,19 \\ 20 . \end{gathered}$	$B_{1 u}$	$\begin{gathered} 12,13, \\ 18 \mathrm{a}, 19 \mathrm{a}, \\ 20 \mathrm{a} . \end{gathered}$						
E_{u}^{-}	$\begin{gathered} 18,19 \\ 20 . \end{gathered}$			$B_{3} u$	$\begin{gathered} 14,15, \\ 18 \mathrm{~b}, 19 \mathrm{~b}, \\ 20 \mathrm{~b} . \end{gathered}$	B_{1}	3,$6 \mathrm{~b}, 7 \mathrm{~b}$,$8 \mathrm{~b}, 9 \mathrm{~b}$,14,15,$18 \mathrm{~b}, 19 \mathrm{~b}$,20 b.	B_{1}	$\begin{gathered} 3, \\ 6 \mathrm{~b}, 7 \mathrm{~b}, \\ 8 \mathrm{~b}, 9 \mathrm{~b}, \\ 12,13, \\ 18 \mathrm{a}, 19 \mathrm{a}, \\ 20 \mathrm{a} . \end{gathered}$		
$B_{2 u}$ $A_{2 g}$	$\frac{14,15}{3 .}$	A_{2}^{\prime}	$\begin{gathered} 3, \\ 14,15 . \end{gathered}$	$B_{2} g$	$\begin{gathered} 3, \\ 6 \mathrm{~b}, 7 \mathrm{~b}, \\ 8 \mathrm{~b}, 9 \mathrm{~b} . \end{gathered}$						
$B_{2 g}$	4, 5,	$A_{2}^{\prime \prime}$	$\begin{gathered} 4,5 \\ 11 . \end{gathered}$	$B_{3 g}$	$\begin{aligned} & 4,5, \\ & 10 \mathrm{~b} . \end{aligned}$	B_{2}	$\|$4,5, 10 b, 11, $16 \mathrm{~b}, 17 \mathrm{~b}$,	A_{2}	$\begin{aligned} & 4,5, \\ & 10 \mathrm{~b}, \end{aligned}$	$A^{\prime \prime}$	$\begin{gathered} 4,5, \\ 10 \mathrm{a}, 10 \mathrm{~b} . \\ 11, \\ 17 \mathrm{a}, 17 \mathrm{~b} . \end{gathered}$
$A_{2 u}$	11.			$B_{2} u$	11,						
E_{u}^{+}	16, 17.	$E^{\prime \prime}$	$\begin{gathered} 10, \\ 16,17 . \end{gathered}$	$A_{1 u}$	$16 \mathrm{a}, 17 \mathrm{a}$.	A_{2}	$\begin{gathered} 10 \mathrm{a}, \\ 16 \mathrm{a}, 17 \mathrm{a} . \end{gathered}$	B_{2}	$\begin{gathered} 10 \mathrm{a}, \\ 11, \\ 16 \mathrm{~b}, 17 \mathrm{~b} . \end{gathered}$		
E_{g}^{-}	10.			$B_{1 g}$	10 a.						

The starting point for the setting up of the rules is the construction of a set of external symmetry coordinates. In order to do this we place a cartesian coordinate system at each atom and oriented as shown in Fig. 1. Following the procedure described by one of the present authors ${ }^{3}$ we get the symmetry coordinates given in Table 2. From these coordinates it is an easy matter to set up the \mathbf{G} matrix of any one of the

[^1]isotopic species. For the present purpose, however, it is sufficient to know the submatrix corresponding to the $H(D)$ coordinates. This 'isotopic \mathbf{G} matrix' is given in Table 3. In the form presented here it includes the isotopic \mathbf{G} matrices of all the deuterated benzenes.

Fig. 1. Cartesian displacement coordinates.

Using the method described in I (pag. 10) one may now construct the coef-ficient-schemes of all the symmetry classes for any one of the deuterated molecules. As shown in I such a scheme comprises all the symmetrical minors of the isotopic \mathbf{G} matrix of the class in question. But furthermore it indicates the form of the determinental equation which is an adequate expression for the complete isotopic rule determining the vibrational frequencies in the class.

In this way all the coefficient-schemes have been constructed, except that for the A^{\prime} class of asym-benzene- d_{3} in which case the labor involved is rather large. As shown below, however, this particular coefficient-scheme-as well as certain othersneed not be known in order to set up the rule.

In Tables 4 and 5 are given a number of coefficient-schemes for the out-ofplane and for the in-plane classes respectively. From these tables the schemes of complementary species can be derived simply by interchanging H and D , as for instance that of para-benzene- d_{4} from that of para-benzene- d_{2}. Instead of giving the total number of rows in these schemes we have collected identical rows into one row, which, therefore, is allotted an appropriate factor. No distinction has been made between 'a' and 'b' symmetry coordinates because this would be of no consequence for the calculations. For this reason the corresponding two columns have been combined and only one given for asym-benzene- d_{3}.

All the partly deuterated benzenes may be considered as derivatives of the $D_{6} h$
Mat.Fys.Skr. Dan.Vid. Selsk. 1, no. 7.

Table 2.

Class	Symmetry coordinates		Freq. no.
$A_{1 g}$		$\begin{gathered} C \\ H, D \end{gathered}$	1, 2.
$B_{1 u}$		$\begin{gathered} C \\ H, D \end{gathered}$	12, 13.
$E_{g a}^{+}$	$\begin{aligned} & \mathrm{S}_{5 \mathrm{a}}=1 / \sqrt{12}\left(\begin{array}{c} 2 Y_{1}-Y_{2}-Y_{3}+2 Y_{4}-Y_{5}-Y_{6} \end{array}\right) \\ & \mathrm{S}_{6 \mathrm{a}}=1 / 2 \quad\left(\begin{array}{l} -X_{2}+X_{3} \end{array}-X_{5}+X_{6}\right) \\ & \mathrm{S}_{7 \mathrm{a}}=1 / \sqrt{12}\left(\begin{array}{c} 2 y_{1}-y_{2}-y_{3}+2 y_{4}-y_{5}-y_{6} \end{array}\right) \\ & \mathrm{S}_{8 \mathrm{a}}=1 / 2 \quad\left(\begin{array}{lr} -x_{2}+x_{3} & -x_{5}+x_{6} \end{array}\right) \end{aligned}$	$\begin{gathered} C \\ C \\ H, D \\ H, D \end{gathered}$	$\begin{aligned} & 6 \mathrm{a}, 7 \mathrm{a}, \\ & 8 \mathrm{a}, 9 \mathrm{a} . \end{aligned}$
$E_{g b}^{+}$	$\left.\begin{array}{l} \mathrm{S}_{5 \mathrm{~b}}=1 / 2 \quad\left(\begin{array}{cc} Y_{2}-Y_{3} & +Y_{5}-Y_{6} \end{array}\right) \\ \mathrm{S}_{6 \mathrm{~b}}=1 / \sqrt{12}\left(\begin{array}{c} 2 X_{1}-X_{2}-X_{3}+2 X_{4}-X_{5}-X_{6} \end{array}\right) \\ \mathrm{S}_{7 \mathrm{~b}}=1 / 2 \quad\left(\begin{array}{c} y_{2}-y_{3} \\ \mathrm{~S}_{8 \mathrm{~b}} \end{array}=1 / \sqrt{12}\left(\begin{array}{c} y_{5}-y_{6} \end{array}\right)\right. \\ 2 x_{1}-x_{2}-x_{3}+2 x_{4}-x_{5}-x_{6} \end{array}\right)$	$\begin{gathered} C \\ C \\ H, D \\ H, D \end{gathered}$	$\begin{aligned} & 6 \mathrm{~b}, 7 \mathrm{~b}, \\ & 8 \mathrm{~b}, 9 \mathrm{~b} . \end{aligned}$
$E_{u a}^{-}$	$\left.\begin{array}{l} \mathrm{S}_{9 \mathrm{a}}=1 / \sqrt{12}\left(\begin{array}{r} 2 Y_{1}+Y_{2}-Y_{3}+2 Y_{4}-Y_{5}+Y_{6} \end{array}\right) \\ \mathrm{S}_{10 \mathrm{a}}=1 / 2 \quad\left(\begin{array}{r} 2 \end{array}\right)+X_{5}+X_{6} \end{array}\right)$	$\begin{gathered} C \\ C \\ H, D \\ H, D \end{gathered}$	$\begin{aligned} & 18 \mathrm{a}, 19 \mathrm{a}, \\ & 20 \mathrm{a}, \mathrm{~T}_{\mathrm{a}} . \end{aligned}$
$E_{u b}^{-}$	$\begin{array}{lrr} \left.\mathrm{S}_{9 \mathrm{~b}}=1 / 2 \quad\left(\begin{array}{r} 2 \end{array}\right) Y_{5}+Y_{6}\right) \\ \mathrm{S}_{10 \mathrm{~b}}=1 / \sqrt{12}\left(-2 X_{1}-X_{2}+X_{3}+2 X_{4}+X_{5}-X_{6}\right) \\ \mathrm{S}_{11 \mathrm{~b}}=1 / 2 \quad\left(\begin{array}{l} 2 \\ \\ \mathrm{~S}_{12 \mathrm{~b}} \end{array}=1 / \sqrt{12}\left(-2 x_{1}-y_{3}-x_{2}+x_{3}+2 x_{4}+x_{5}-x_{6}\right)\right. \end{array}$	$\begin{gathered} C \\ C \\ H, D \\ H, D \end{gathered}$	$\begin{aligned} & 18 \mathrm{~b}, 19 \mathrm{~b}, \\ & 20 \mathrm{~b}, \mathrm{~T}_{\mathrm{b}} . \end{aligned}$
$B_{2 u}$	$\begin{aligned} & \mathrm{S}_{13}=1 / \sqrt{6}\left(\quad X_{1}-X_{2}+X_{3}-X_{4}+X_{5}-X_{6}\right) \\ & \mathrm{S}_{14}=1 / \sqrt{6}\left(\quad x_{1}-x_{2}+x_{3}-x_{4}+x_{5}-x_{6}\right) \end{aligned}$	$\begin{gathered} C \\ H, D \end{gathered}$	14, 15.
$A_{2 g}$	$\begin{aligned} & \mathrm{S}_{15}=1 / \sqrt{6}\left(\quad \begin{array}{l} \left.X_{1}+X_{2}+X_{3}+X_{3}+X_{5}+X_{6}\right) \\ \mathrm{S}_{16}=1 / \sqrt{6}(\end{array} \quad x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right) \end{aligned}$	$\begin{gathered} C \\ H, D \end{gathered}$	3, R_{z}.
$B_{2 g}$	$\begin{aligned} & \mathrm{S}_{17}=1 / \sqrt{6}\left(\quad Z_{1}-Z_{2}+Z_{3}-Z_{4}+Z_{5}-Z_{6}\right) \\ & \mathrm{S}_{18}=1 / \sqrt{6}\left(\quad z_{1}-z_{2}+z_{3}-z_{4}+z_{5}-z_{6}\right) \end{aligned}$	$\begin{gathered} C \\ H, D \end{gathered}$	4, 5.
$A_{2 u}$		$\begin{gathered} C \\ H, D \end{gathered}$	11, T_{z}.
$E_{u a}^{+}$	$\begin{array}{llll} \mathrm{S}_{21 \mathrm{a}}=1 / 2 \\ \mathrm{~S}_{22 \mathrm{a}}=1 / 2 & (& -Z_{2}+Z_{3} & \left.-Z_{5}+Z_{6}\right) \\ -z_{2}+z_{3} & \left.-z_{5}+z_{6}\right) \end{array}$	$\begin{gathered} C \\ H, D \end{gathered}$	$16 \mathrm{a}, 17 \mathrm{a}$.
$E_{u b}^{+}$	$\begin{aligned} & \mathrm{S}_{21 \mathrm{~b}}=1 / \sqrt{12}\left(\quad 2 Z_{1}-Z_{2}-Z_{3}+2 Z_{4}-Z_{5}-Z_{6}\right) \\ & \mathrm{S}_{22 \mathrm{~b}}=1 / \sqrt{12}\left(\quad 2 z_{1}-z_{2}-z_{3}+2 z_{4}-z_{5}-z_{6}\right) \end{aligned}$		$16 \mathrm{~b}, 17 \mathrm{~b}$.
$E_{g a}^{-}$	$\begin{array}{llll} \mathrm{S}_{23 \mathrm{a}}=1 / 2 & (& Z_{2}+Z_{3} & \left.-Z_{5}-Z_{6}\right) \\ \mathrm{S}_{24 \mathrm{a}}=1 / 2 & (& z_{2}+z_{3} & \left.-z_{5}-z_{6}\right) \end{array}$	$\begin{gathered} C \\ H, D \end{gathered}$	$10 \mathrm{~b}, \mathrm{R} \mathrm{a}$.
$E_{g b}^{-}$	$\begin{aligned} & \mathrm{S}_{23 \mathrm{~b}}=1 / \sqrt{12}\left(\quad 2 Z_{1}+Z_{2}-Z_{3}-2 Z_{4}-Z_{5}+Z_{6}\right) \\ & \mathrm{S}_{24 \mathrm{~b}}=1 / \sqrt{12}\left(\quad 2 z_{1}+z_{2}-z_{3}-2 z_{4}-z_{5}+z_{6}\right) \end{aligned}$	$\begin{gathered} C \\ H, D \end{gathered}$	$10 \mathrm{~b}, \mathrm{R}_{\mathrm{b}}$.

Nr. 7
Table 3. Isotopic G matrix.

		$\begin{gathered} A_{1 g} \\ \mathrm{~S}_{2} \end{gathered}$	$\begin{gathered} B_{1 u} \\ S_{4} \end{gathered}$	$\begin{gathered} E_{g a}^{+} \\ \mathrm{S}_{7 \mathrm{a}} \quad \mathrm{~S}_{8 \mathrm{a}} \end{gathered}$	$\begin{gathered} E_{g b}^{+} \\ \mathrm{S}_{7 \mathrm{~b}} \quad \mathrm{~S}_{8 \mathrm{~b}} \end{gathered}$	$\begin{gathered} E_{u a}^{-} \\ S_{11 \mathrm{a}} \quad \mathrm{~S}_{12 \mathrm{a}} \end{gathered}$	$\begin{gathered} E_{u b}^{-} \\ \mathrm{S}_{11 \mathrm{~b}} \quad \mathrm{~S}_{12 \mathrm{~b}} \end{gathered}$	$\begin{gathered} B_{2 u} \\ \mathrm{~S}_{14} \end{gathered}$	$\begin{gathered} A_{2 g} \\ \mathrm{~S}_{16} \end{gathered}$
$A_{1 g}$	S_{2}	a	d	g	i	h	-j		
$B_{1 u}$	S_{4}	d	a	h	- j	g	i		
$E_{g a}^{+}$	$\begin{aligned} & S_{7 a} \\ & S_{8} a \end{aligned}$	g	h	c b	$-\mathrm{k}$ k	f - e	1	j	-i
$E_{g b}^{+}$	$\begin{aligned} & \mathrm{S}_{7 b} \\ & \mathrm{~S}_{8 b} \end{aligned}$	i	- j	$-\mathrm{k}$ k	b c	1	$-\mathrm{f}$	h	g
$E_{u a}^{-}$	$\begin{aligned} & S_{11 \mathrm{a}} \\ & \mathrm{~S}_{12 \mathrm{a}} \end{aligned}$	h	g	$-\mathrm{e}$	1	b	$-\mathrm{k}$ k	i	- j
$E_{u b}^{-}$	$\begin{aligned} & S_{11 b} \\ & S_{12 b} \end{aligned}$	$-\mathrm{j}$	1	1	$-\mathrm{f}$	$-\mathrm{k}$ k	b	-g	-h
$B_{2} u$	S_{14}			j	h	i	-g	a	d
$A_{2 g}$	S_{16}			-i	g	-j	-h	d	a

	$B_{2 g}$	$A_{2 u}$	$E_{u a}^{+}$	$E_{u b}^{+}$	$E_{g a}^{-}$	$E_{g b}^{-}$	
	S_{18}	$\mathrm{~S}_{20}$	$\mathrm{~S}_{22 \mathrm{a}}$	$\mathrm{S}_{24 \mathrm{~b}}$	$\mathrm{~S}_{24 \mathrm{a}}$	$\mathrm{S}_{24 \mathrm{~b}}$	
$B_{2 g}$	$\mathrm{~S}_{18}$	a	d	j	h	-i	g
$A_{2 u}$	$\mathrm{~S}_{20}$	d	a	-i	g	j	h
$E_{u a}^{+}$	$\mathrm{S}_{22 \mathrm{a}}$	j	-i	b	k	e	-l
$E_{u b}^{+}$	$\mathrm{S}_{22 b}$	h	g	k	c	-l	f
$E_{g a}^{-}$	$\mathrm{S}_{24 \mathrm{a}}$	-i	j	e	-l	b	k
$E_{g b}^{-}$	$\mathrm{S}_{24 b}$	g	h	-l	f	k	c

where

$$
\begin{array}{llrlrl}
\mathrm{a}=1 / 6 & \left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}\right) & \mathrm{g}=2 / \sqrt{12}\left(2 \mu_{1}-\mu_{2}-\mu_{3}+2 \mu_{4}-\mu_{5}-\mu_{6}\right) \\
\mathrm{b}=1 / 4 & \left(\mu_{2}+\mu_{3}\right. & \left.+\mu_{5}+\mu_{6}\right) & \mathrm{h}=2 / \sqrt{12}\left(2 \mu_{1}+\mu_{2}-\mu_{3}-2 \mu_{4}-\mu_{5}+\mu_{6}\right) \\
\mathrm{c}=1 / 12 & \left(4 \mu_{1}+\mu_{2}+\mu_{3}+4 \mu_{4}+\mu_{5}+\mu_{6}\right) & \mathrm{i}=6 / \sqrt{12}(& \mu_{2}-\mu_{3} & \left.+\mu_{5}-\mu_{6}\right) \\
\mathrm{d}=1 / 6 & \left(\mu_{1}-\mu_{2}+\mu_{3}-\mu_{4}+\mu_{5}-\mu_{6}\right) & \mathrm{j}=6 / \sqrt{12}(& \mu_{2}+\mu_{3} & \left.-\mu_{5}-\mu_{6}\right) \\
\mathrm{e}=1 / 4 & \left(--\mu_{2}+\mu_{3}\right. & \left.+\mu_{5}-\mu_{6}\right) & \mathrm{k}=3 / \sqrt{12}(& \mu_{2}-\mu_{3} & \left.+\mu_{5}-\mu_{6}\right) \\
\mathrm{f}=1 / 12 & \left(4 \mu_{1}-\mu_{2}+\mu_{3}-4 \mu_{4}+\mu_{5}-\mu_{6}\right) & \mathrm{l}=3 / \sqrt{12}(& \mu_{2}+\mu_{3} & \left.-\mu_{5}-\mu_{6}\right)
\end{array}
$$

μ_{1} etc. are the reciprocal masses of the hydrogen resp. deuterium atoms.

Table 4. Coefficient-schemes for the non-planar classes.

species, and accordingly their fundamental frequencies may be calculated from those of the $D_{6 h}$ compounds $\left(-\mathrm{d}_{0}\right.$ and $\left.-\mathrm{d}_{6}\right)$. Many of them (viz.: $-\mathrm{d}_{1}$, ortho- d_{2}, meta- d_{2}, asym $-\mathrm{d}_{3}$, ortho- d_{4}, meta- d_{4}, and $-\mathrm{d}_{5}$) may, however, just as well be considered as $D_{2 h}$ derivatives, and their fundamental frequencies may on this basis in fact more easily be calculated from those of the $D_{2 h}$ compounds (para- d_{2} and para- d_{4}) together with those of the $D_{6 h}$ compounds $\left(-\mathrm{d}_{0}\right.$ and $\left.-\mathrm{d}_{6}\right)$, the latter being considered as having $D_{2 h}$ symmetry. Correspondingly, asym- d_{3} may be treated as a $C_{2 v}$ derivative.

There are therefore several alternative combinations of partly deuterated benzenes to which the complete isotopic rule may be applied. This leaves us a certain

Table 5. Coefficient-schemes for the planar classes of sym-benzene- d_{3}, para-ben-zene- d_{2}, and vic-benzene- d_{3}.

			$\begin{gathered} A_{1 g} \\ S_{2} \end{gathered}$	$\begin{gathered} B_{1 u} \\ S_{4} \end{gathered}$	E_{g}^{+}		E_{u}^{-}		$\begin{aligned} & B_{2 u} \\ & \mathrm{~S}_{14} \end{aligned}$	$\begin{gathered} A_{2 g} \\ \mathrm{~S}_{16} \end{gathered}$	
			S_{7}		S_{8}	S_{11}	S_{12}				
sym-d ${ }_{3}$	A_{1}^{\prime}	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$		$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$						
	E^{\prime}	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$			$\begin{aligned} & H \\ & H \\ & D \\ & D \end{aligned}$	$\begin{gathered} H \\ D \\ H \\ D \end{gathered}$	$\begin{aligned} & D \\ & D \\ & H \\ & H \end{aligned}$	$\begin{aligned} & D \\ & H \\ & D \\ & H \end{aligned}$			
	A_{2}^{\prime}	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$							$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$	
$\mathrm{p}-\mathrm{d}_{2}$	$A_{1 g}$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$		$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$					
	$B_{1 u}$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$		$\begin{aligned} & D \\ & H \end{aligned}$			$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$			
	$B_{3} u$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$					$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$		
	$B_{2} g$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$			$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & D \end{aligned}$				$\begin{aligned} & D \\ & H \end{aligned}$	
vic- d_{3}	A_{1}	$\begin{aligned} & 1 / 72 \\ & 1 / 72 \\ & 1 / 72 \\ & 1 / 72 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	D D H H D D H H H H D D D	$\begin{gathered} H \\ H \\ D \\ D \\ D \\ D \\ H \\ H \\ D \\ D \\ H \\ H \end{gathered}$	$\begin{aligned} & H \\ & H \\ & D \\ & D \\ & H \\ & H \\ & D \\ & D \\ & H \\ & H \\ & D \\ & D \end{aligned}$	$\begin{gathered} H \\ D \\ H \\ D \\ D \\ H \\ D \\ H \\ H \\ D \\ H \\ D \end{gathered}$	D D H H H H D D D D H H	$\begin{aligned} & D \\ & H \\ & D \\ & H \\ & H \\ & D \\ & H \\ & H \\ & D \\ & D \\ & H \\ & D \\ & H \end{aligned}$			
	B_{1}	$\begin{aligned} & 1 / 72 \\ & 1 / 72 \\ & 1 / 72 \\ & 1 / 72 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 9 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$			$\begin{aligned} & H \\ & H \\ & D \\ & D \\ & H \\ & D \\ & H \\ & D \\ & H \\ & H \\ & D \\ & D \end{aligned}$	$\begin{aligned} & H \\ & D \\ & H \\ & D \\ & H \\ & H \\ & D \\ & D \\ & H \\ & D \\ & H \\ & D \end{aligned}$	D D H H D H D H D D H H	D H D H H H H D D D H D H	$\begin{aligned} & H \\ & D \\ & H \\ & D \\ & D \\ & D \\ & H \\ & H \\ & D \\ & H \\ & D \\ & H \end{aligned}$	$\begin{aligned} & D \\ & H \\ & D \\ & H \\ & D \\ & D \\ & H \\ & H \\ & H \\ & D \\ & H \\ & D \end{aligned}$	

latitude for choosing that particular combination which in practice presents the easiest way for the calculation of the fundamental frequencies of the lower-symmetrical species. In Fig. 2 is sketched how, for instance, benzene- d_{1} may be considered as an 'intermediate' compound between benzene- d_{0} and para-benzene- d_{2}. For asym-ben-zene- d_{3} there are four different possibilities.

Fig. 2. Alternative possibilities for complete isotopic rules.

As discussed in I (pag. 13) the rules for all symmetry classes of the intermediate compounds to the left in Fig. 2 are of the mean-value type. For instance, for the A_{1} class of benzene- d_{1} we have:

$$
\left[\left(A_{1}\right)^{d_{1}}\right]=\frac{1}{2}\left[\left(A_{1 g}\right)^{d_{0}}\left(B_{1 u}\right)^{p-d_{2}}\right]+\frac{1}{2}\left[\left(A_{1 g}\right)^{p-d_{2}}\left(B_{1 u}\right)^{d_{0}}\right] .
$$

The coefficients of $\left[\left(A_{1 g}\right)^{d_{0}}\right]$ and $\left[\left(B_{1 u}\right)^{d_{0}}\right]$ are formed in a way analogous to that used for a hybrid class (I, pag. 5). The rules for asym-benzene $-\mathrm{d}_{3}$ as a $D_{2 h}$ derivative (to the right in Fig. 2) are more complicated, involving four different hybrid classes. The
frequencies of this compound are therefore more easily calculated by use of, for instance, the following rule for the in-plane fundamentals:

$$
\left[\left(A_{1}\right)^{a s-d_{s}}\right]=\frac{1}{2}\left[\left(A_{1}\right)^{p-d_{2}}\left(B_{1}\right)^{m-d_{4}}\right]+\frac{1}{2}\left[\left(A_{1}\right)^{m-d_{4}}\left(B_{1}\right)^{p-d_{2}}\right] .
$$

Here again the coefficients for para-benzene- d_{2} considered as a $C_{2 v}$ compound are evaluated as for a hybrid class.

This means that all the frequencies of the following isotopic molecules: $-\mathrm{d}_{1}$, ortho $-\mathrm{d}_{2}$, meta- d_{2}, asym $-\mathrm{d}_{3}$, ortho $-\mathrm{d}_{4}$, meta $-\mathrm{d}_{4}$, and $-\mathrm{d}_{5}$, may be calculated from those of: $-\mathrm{d}_{0}$, para- d_{2}, para- d_{4}, and $-\mathrm{d}_{6}$. It was shown in I (pag. 13) that the isotopic rules are strictly valid only for the non-planar fundamentals of all the deuterated benzenes as well as for the planar fundamentals of benzene $-d_{1}$ and benzene- d_{5}. For the planar fundamentals of the rest of the above mentioned isotopic benzenes the rules are only approximately valid in so far as they in these cases are based on the separability of high and low frequencies.

It should be noted that sym-benzene- d_{3} and vic-benzene- d_{3} can not be considered as $D_{2 h}$ derivatives. This is because the two para atoms in these compounds always are different, one being a hydrogen the other a deuterium atom.

The fundamental frequencies of sym- d_{3}, para- d_{2}, para- d_{4}, and vic- d_{3} must be calculated directly from benzene- d_{0} and benzene- d_{6}. Two symmetry classes (E_{g}^{+}and E_{u}^{-}) of the $D_{6 h}$ molecules contain more than one isotopic symmetry coordinate, which means that the rules are strictly valid for those symmetry classes of the intermediate compounds which do not contain these vibrations. These include all the non-planar vibrations, but of planar vibrations only the two classes A_{1}^{\prime} and A_{2}^{\prime} of sym-benzene- d_{3}. The form of the rules are immediately given by the coefficient-schemes (Tables 4 and 5) as discussed in I (pag. 12).

The frequencies of the remaining planar fundamentals are given only by approximate rules, the form of which is found in the following way.

We assume that the hydrogen atoms in all high-frequency vibrations move in the radial (y) direction only and in all low-frequency vibrations in the tangential (x) direction only. In other words, we assume that the movements of the hydrogen atoms in the high-frequency vibrations may be described by use of the y-symmetry coordinates only $\left(\mathrm{S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{7 a}, \mathrm{~S}_{7 b}, \mathrm{~S}_{11 a}\right.$, and $\left.\mathrm{S}_{11 b}\right)$, and in the low-frequency vibrations by use of the x-symmetry coordinates only $\left(\mathrm{S}_{8 a}, \mathrm{~S}_{8 b}, \mathrm{~S}_{12 a}, \mathrm{~S}_{12 b}, \mathrm{~S}_{14}\right.$, and $\left.\mathrm{S}_{16}\right)$. Consequently, the whole problem is splitted into two, one for the high-frequency vibrations, and another for the low-frequency vibrations. In order to set up the rules the coefficientscheme is splitted into two parts: one for the high frequencies comprising the columns labelled $\mathrm{S}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{7}$, and S_{11}, and another for the low frequencies comprising the columns labelled $\mathrm{S}_{8}, \mathrm{~S}_{12}, \mathrm{~S}_{14}$, and S_{16}.

As the two low frequencies 1 and 12 belong to classes containing radial symmetry coordinates only they should in this connection be taken together with the high, radial, stretching frequencies $2,13,7$, and 20 . This suggests a further splitting of the high frequency part of the coefficient-scheme into two parts: one for the frequencies

Table 6. Splitted coefficient-schemes for the planar classes of sym-benzene- d_{3}, para-benzene- d_{2}, and vic-benzene- d_{3}.

		Freq. No. 1 and 12			$\begin{gathered} \text { Freq. No. } \\ 6,8,9,18,19,14,15 \text {, and } 3 \end{gathered}$					$\begin{gathered} \text { Freq. No. } \\ 2,13,7 \text {, and } 20 \end{gathered}$				
			$\begin{gathered} A_{1 g} \\ S_{2} \end{gathered}$	$\begin{gathered} B_{1 u} \\ S_{4} \end{gathered}$		E_{g}^{+} S_{8}	E_{u}^{-} S_{12}	$B_{2 u}$ $\mathrm{~S}_{14}$	$\begin{aligned} & A_{2 g} \\ & \mathrm{~S}_{16} \end{aligned}$		$\begin{gathered} A_{1 g} \\ S_{2} \end{gathered}$	$B_{1 u}$ S_{4}	E_{g}^{+} S_{7}	E_{u}^{-} S_{11}
sym- d_{3}	A_{1}^{\prime}	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	H D	$\begin{aligned} & D \\ & H \end{aligned}$						$1 / 2$ $1 / 2$	H D	D H		
	E^{\prime}				$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$			$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$			H D	D H
	A_{2}^{\prime}				$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$			H D	D H					
$\mathrm{p}-\mathrm{d}_{2}$	$A_{1 g}$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$		1	H				$1 / 3$ $2 / 3$	$\begin{aligned} & D \\ & H \end{aligned}$		H D	
	$B_{1 u}$	$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$		$\begin{aligned} & D \\ & H \end{aligned}$	1		H			$1 / 3$ $2 / 3$		D H		H D
	$B_{3 u}$				$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$		H D	D H		1				H
	$B_{2} g$				$\begin{aligned} & 1 / 3 \\ & 2 / 3 \end{aligned}$	$\begin{aligned} & H \\ & D \end{aligned}$			$\begin{aligned} & D \\ & H \end{aligned}$	1			H	
vic- d_{3}	A_{1}	$\begin{aligned} & 5 / 18 \\ & 5 / 18 \\ & 2 / 9 \\ & 2 / 9 \end{aligned}$	$\begin{aligned} & D \\ & H \\ & D \\ & H \end{aligned}$	$\begin{aligned} & H \\ & D \\ & D \\ & H \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & H \\ & D \end{aligned}$	$\begin{aligned} & D \\ & H \end{aligned}$			$\begin{aligned} & 1 / 36 \\ & 1 / 36 \\ & 2 / 9 \\ & 2 / 9 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{gathered} D \\ H \\ D \\ H \\ D \\ H \end{gathered}$	$\begin{gathered} H \\ D \\ D \\ H \\ H \\ D \end{gathered}$	$\begin{gathered} H \\ D \\ H \\ D \\ D \\ H \end{gathered}$	$\begin{gathered} D \\ H \\ H \\ D \\ H \\ D \end{gathered}$
	B_{1}				$\begin{aligned} & 1 / 36 \\ & 1 / 36 \\ & 2 / 9 \\ & 2 / 9 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{gathered} D \\ H \\ D \\ H \\ D \\ H \end{gathered}$	$\begin{gathered} H \\ D \\ D \\ H \\ H \\ D \end{gathered}$	$\begin{gathered} D \\ H \\ H \\ D \\ H \\ D \end{gathered}$	H D H D D H	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$			$\begin{gathered} H \\ D \end{gathered}$	$\begin{aligned} & D \\ & H \end{aligned}$

1 and 12 comprising the columns labelled S_{2} and S_{4}, and one for the frequencies 2, 13,7 , and 20 comprising all four columns labelled S_{2}, S_{4}, S_{7}, and S_{11}.

The coefficient-scheme splitted according to the above discussion is shown in Table 6 for sym-benzene- d_{3}, para-benzene- d_{2}, and vic-benzene- d_{3}. From this scheme the rules for each group of frequencies is set up in the usual way. The high frequencies $2,13,7$, and 20 may be treated as hydrogen or deuterium frequencies separately by using only the H or the D elements of the schemes as discussed in I (pag. 19).

To sum up, the whole calculation is splitted up into five separate parts corresponding to the following types of vibrations:

1) the non-planar vibrations (z coordinates),
2) the low-frequency planar vibrations from classes containing hydrogen tangential (x) coordinates,
3) the low-frequency vibrations from classes containing radial (y) coordinates only,
4) the deuterium stretching vibrations (y coordinates), and
5) the hydrogen stretching vibrations (y coordinates).

The validity of this procedure is based on the assumption that the high and the low frequencies respectively correspond to pure radial and pure tangential vibrations as far as the hydrogen (deuterium) atoms are concerned. This is doubtless correct to a sufficient approximation for the high frequencies. For the low frequencies of the E_{g}^{+}and E_{u}^{-}classes, however, it can not be strictly true, although it is obvious that most of these frequencies correspond to tangential vibrations. A further discussion of this point will be given in connection with the comparison between calculated and observed frequencies (pag. 34).

Observed Frequencies.

The normal frequencies of the benzene- d_{0} and benzene- d_{6} molecules, which are used as the basis for the present calculations, are given in Table 7. Except for minor corrections made on the basis of new Raman data the assigned frequencies are the result of the detailed investigation and analysis of the spectra of benzene- d_{0}, sym-benzene- d_{3}, and benzene $-\mathrm{d}_{6}$ reported on previously ${ }^{1}$.

The frequencies of the partly deuterated benzenes are all from measurements carried out in this laboratory ${ }^{2}$. The samples used for the present investigation were all except one (para-benzene- d_{2}) the same as those used previously to obtain the Raman spectra ${ }^{3}$. The preparations have been described by Langseth and Klit ${ }^{4}$.

The Raman spectra of all the deuterated benzenes in the liquid state have been reinvestigated using photographic technique. The spectra were excited with as well filtered $\left(\mathrm{NaNO}_{2}\right)$ as with unfiltered mercury radiation. The Raman frequencies were measured both from photographic enlargements (by interpolations between lines of the iron arc) and from microphotometer curves.

The infrared spectra of both gas and liquid state have been recorded on a Beckman IR 3 spectrometer using the technique previously described ${ }^{1}$.

All the samples investigated (except that of sym-benzene- d_{3}) contained an appreciable amount of lower deuterated compounds. But as the spectra of all the dif-

[^2]ferent isotopic species were available, it was in most cases possible to subtract the bands orriginating from the lower deuterated compounds. In no case bands due to other impurities have been detected.

Table 7. Fundamental frequencies of benzene- d_{0} and benzene- d_{6}.

Class	Freq. No.	Vapour		Liquid	
		$-\mathrm{d}_{0}$	$-\mathrm{d}_{6}$	$-\mathrm{d}_{0}$	$-\mathrm{d}_{6}$
$A_{1 g}$	1	992.8	945.5	992.5	945.1
	2	3073.5	2303.2	3062	2294
$B_{1 u}$	12	1010	970	1010	970
	13	3057	2285	3048	2275
E_{g}^{+}	6	607	579	607	579
	7	3055	2275	3047	2267
	8	1600*	1558	1595*	1553
	9	1177	868	1177	868
E_{u}^{-}	18	1037	814	1035	812
	19	1482	1333	1479	1330
	20	3068*	2288	3057*	2276*
$B_{2} u$	14	1309	1282	1309	1282
	15	1146	824	1146	823
$A_{2 g}$	3	1350	1059	1346	1055
$B_{2} g$	4	707	599	707	599
	5	990	829	991	830
$A_{2 u}$	11	673	496	675	497
E_{u}^{+}	16	398	345	404	351
	17	967	787	969	789
E_{g}^{-}	10	845	659	849	663

* Assumed, unperturbed frequency.

Because of the enormous number of bands measured in all these spectra we shall not attempt to give a complete list of observed frequencies or even to bring graphical reproductions of the spectra. In Tables $8-18$ are given the frequencies interpreted as fundamentals. Normally they correspond to the more prominent bands of the spectra. Only the bands assigned to inactive fundamentals, observed in the liquid state, are weak.

Numerical Calculations.

Although the proof of the complete isotopic rule is based on the harmonic approximation we have not found it necessary to make any attempt to adjust the observed frequencies for benzene- d_{0} and benzene- d_{6} to fit this approximation. Because the calculations based on the isotopic rule really are a kind of interpolation between the frequencies of the 'light' and the 'heavy' compound the anharmonicity tends to cancel. The calculations were consequently carried out directly from the frequencies given in Table 7. As the fundamental frequencies assigned for the vapour and the liquid state differ a little we have carried through two series of calculations, one for each state.

Even if this is a tedious task, most of the calculations may be carried out on an electric desk calculator (digit capacity: $10-10-20$). In one case, however, we have to solve an equation of 13 . degree (class A^{\prime} of asym-benzene- d_{3}), which can not be done with this kind of machine. In order to solve this problem and at the same time to increase the speed and the accuracy of the calculations, it was decided to use an electronic computor.

A code has been worked out for the danish electronic computor Dask. The code was made so that it should be of universal use for all calculations based on the complete isotopic rule.

For each special problem a set of operational orders must be set up. For benzene these orders are identical for the non-planar and the low planar frequencies (6, 8, 9, $18,19,14,15$, and 3). This convenience is caused by the formal conformity of the x and z symmetry coordinates (Table 2).

The results of the calculations are given in Tables 8-18 (pag. 25-33). The hydrogen stretching frequencies have not been calculated because we know that the resulting frequencies all will fall inside the original interval, which is only $18 \mathrm{~cm}^{-1}$ for the vapour and $15 \mathrm{~cm}^{-1}$ for the liquid (see Table 7). Furthermore, it seems rather futile to make these calculations in view of: a) the uncertainty of the basic frequencies, b) the errors arrising from the introduced approximations, c) the experimental errors, and d) the great probability in this region for resonance because of accidental degeneracy.

First-Order Approximation.

It may be difficult to survey the changes in frequencies calculated from the rule for the various isotopic species. For this reason we have found it convenient to introduce the following first-order approximation: The squares of the frequencies are calculated from those of the full-symmetry compounds by linear interpolation following the rule given by the appropriate column in the coefficient-scheme.

This approximation has the following advantages:

1. The first-order frequencies have a certain physical significance. They account for the pure isotopic effect on a single vibration neglecting the interaction with all other vibrations.
2. The sum of the squares of the first-order frequencies equals that of the correctly calculated (the highest degree coefficient in the secular equation is correct).
3. The first-order frequencies are easily calculated (see below).

In order to demonstrate how the first-order frequencies are calculated we may take some examples from the planar frequencies of para-benzene- d_{2}.

For the frequencies 1 and 12 we use the two columns in the coefficient-scheme labelled $A_{1 g}$ and $B_{1 u}$ respectively (see Table 6). In both cases we get

$$
\lambda=\frac{1}{3} \lambda_{D}+\frac{2}{3} \lambda_{H}
$$

where λ_{D} and λ_{H} are the squares of the frequencies in benzene- d_{6} and benzene- d_{0} respectively.

For the low frequencies of the $B_{3 u}$ class we get for 18 b and 19 b (originally in the E_{u}^{-}class)

$$
\begin{aligned}
& \lambda=\frac{2}{3} \lambda_{D}+\frac{1}{3} \lambda_{H} \\
& \lambda=\frac{1}{3} \lambda_{D}+\frac{2}{3} \lambda_{H} .
\end{aligned}
$$

whereas for 14 and 15 we get

Instead of using a column of the coefficient-scheme we may equally well take the corresponding diagonal element of the isotopic \mathbf{G}-matrix (see I pag. 10). Let us denote this element $(1-\alpha) \mu_{H}+\alpha \mu_{D}$. The first-order frequencies in the class are then given by

$$
\lambda=(1-\alpha) \lambda_{H}+\alpha \lambda_{D} .
$$

The value of α is easily calculated as the sum of the squares of the coefficients for the deuterium atoms in the corresponding symmetry coordinates. From Table 2 and the above given rules for the splitting of the coefficient-scheme we get the following values for α :

	$-\mathrm{d}_{1}$	$\mathrm{p}-\mathrm{d}_{2}$	$\mathrm{O}-\mathrm{d}_{2}$ $\mathrm{~m}-\mathrm{d}_{2}$	$\left\|\begin{array}{c}\text { vic- } d_{3} \\ \text { sym-d }\end{array}\right\|$	as-d ${ }_{3}$	$\mathrm{O}-\mathrm{d}_{4}$ $\mathrm{~m}-\mathrm{d}_{4}$	$\mathrm{p}-\mathrm{d}_{4}$	$-d_{5}$
non-degenerate vibrations	1/6	2/6	2/6	3/6	3/6	4/6	4/6	5/6
$\left.\begin{array}{l}\text { a-components of low-frequency vibrations } \\ \text { b-components of high-frequency vibrations }\end{array}\right\}$	0	0	3/6	3/6	1/4	3/6	1	1
$\left.\begin{array}{l}\text { b-components of low-frequency vibrations } \\ \text { a-components of high-frequency vibrations }\end{array}\right\}$	2/6	4/6	1/6	3/6	$3 / 4$	5/6	2/6	4/6

Note, that the mean-value for α for the two components of a degenerate vibration equals that for a non-degenerate vibration.

The first-order approximation is indicated in Fig. 3-11 by use of a thin line. The abcissa in these diagrams is linear in square of frequency. The first-order approxi-

Fig. 3. Non-planar classes of the $D_{2 h}$ compounds.
mation is consequently represented by a straight line for a non-degenerate vibration, but by a broken line for a degenerate vibration.

If we next pass on to the frequencies calculated from the complete isotopic rule (indicated in the diagrams by heavy marks) we take the interaction of the vibrations into account. This interaction causes a mixing of the vibrations. The effect on the frequencies is a splitting, following the above given rule that the sum of the squares of the frequencies is maintained.

The magnitude of this splitting is very different in the various cases. Isolated frequencies maintain the first-order approximation value within the experimental error. This is demonstrated by the fundamentals 1 and 12 , in $o-d_{2}, p-d_{2}, 0-d_{4}$, and $\mathrm{p}-\mathrm{d}_{4}$, which in our approximation do not interact with other frequencies.

[^3]The frequencies of distinct carbon vibrations, which have nearly the same frequency in benzene- d_{0} and benzene- d_{6}, shift very little from the first order approximation values. This is demonstrated by the fundamentals $6 \mathrm{a}, 6 \mathrm{~b}, 8 \mathrm{a}, 8 \mathrm{~b}, 14$, 16 a , and 16 b . Exceptions are cases where the first-order approximation value happens to be close to that of another vibration of the same symmetry. This is very clearly demonstrated by the fundamentals 1 and 12 in benzene- d_{1}, meta- d_{2}, vic- d_{3}, sym- d_{3}, asym- d_{3}, meta- d_{4}, and benzene- d_{5}, as well as by 14 in benzene- d_{1} and meta- d_{2}.

Fig. 4. Planar classes of the $D_{2 h}$ compounds.

The frequencies of distinct hydrogen (deuterium) vibrations, having very different frequencies in benzene- d_{0} and benzene- d_{6}, are liable to shift very far from the first-order approximation values. This is especially the case for the stretching vibrations, where the mixing is so complete that almost pure hydrogen and deuterium frequencies result. In these cases the first-order approximation is of no value, and the corresponding diagrams are therefore not given.

In a more complicated manner the hydrogen (deuterium) bending vibrations
mix with each other as well as with bending vibrations being partly hydrogen (deuterium) partly carbon vibrations. Especially the fundamentals 18, 15, and 9 are often mixed very completely resulting in a large splitting of the frequencies.

The physical reason for the splitting of the first-order approximation frequencies is the following. In the full-symmetry compounds the atoms are oscillating according to the restrictions given by the symmetry of the class to which the frequency in question

Fig. 5. Non-planar classes of the $C_{2} v$ compounds.
belongs. In the first-order approximation these restrictions are maintained for the partly deuterated compounds in spite of their lower symmetries. But when the approximation is abandoned these restrictions vanish and certain interactions arise. In the simplest case of two interacting vibrations we get the well-known splitting into two new vibrations, one in which primarily the hydrogen atoms and the corresponding carbon atoms oscillate, and another in which primarily the deuterium atoms and the corresponding carbon atoms oscillate. The first one will have a higher, the latter a lower frequency than both of the first-order approximation frequencies. In the limit
this splitting may result in a pure hydrogen vibration and a pure deuterium vibration with frequencies being some sort of mean values of the two frequencies in benzene- d_{0}, respectively benzene- d_{6}. This is the case for the hydrogen (deuterium) stretching frequencies. The result of the mixing of more than two vibrations is in principle the same, which is evident from the diagrams.

Fig. 6. Planar classes of the $C_{2 v}$ compounds.

As a consequence of this point of view, the highest frequency of an intermediate compound can never exceed the highest frequency in the corresponding symmetry class of benzene- d_{0}, and analogously, the lowest frequency of an intermediate compound can never be lower than the lowest one in the corresponding symmetry class of benzene- d_{6}. Also this general rule is distinctly demonstrated by the diagrams.

The degree of mixing of the vibrations, and the consequent splitting of the frequencies, depends largely on the closeness of the first-order frequencies as well as on the carbon or hydrogen character of the vibrational modes. These factors are, however, not the only ones responsible for the magnitude of the effect. This is evident from the behaviour of the frequencies 1 and 12 shown in Fig. 11 (pag. 23).

The strongly varying splittings may be explained in the following way. The common three-fold symmetry of the $D_{6 h}$ classes $A_{1 g}$ and $B_{1 u}$ divides both the carbon atoms and the hydrogen atoms into two sets, inside each of which the atoms are restricted to oscillate identically. In the first-order approximation these two sets move alike, in-phase and out-of-phase respectively. If the two sets are loaded equally

Fig. 7. Non-planar classes of the $C_{2}^{*} v$ compounds.
-as in ortho $-\mathrm{d}_{2}$, para- d_{2}, ortho $-\mathrm{d}_{4}$, and para- d_{4}-we get no mixing and, hence, no splitting. If there is one deuterium atom more in one set than in the other-as in benzene $-d_{1}$, vic- d_{3}, asym $-\mathrm{d}_{3}$, and $-\mathrm{d}_{5}$-we get a slight mixing, resulting in a slight splitting of the frequencies 1 and 12. If the disparity between the loading of the two sets is two deuterium atoms-as in meta- d_{2} and meta- d_{4}-we get a moderate mixing and a moderate splitting. Finally - in sym- d_{3}-we have a disparity of three deuterium atoms, and therefore a large mixing and a large splitting. Mathematically this is expressed by the different values of the \mathbf{G} matrix element $G_{2,4}$, or by the corresponding coefficient-scheme.

As a result of the mixing the vibrational modes may undergo a considerable change from their original form. Consequently, the numbering of the fundamentals in the intermediate compounds will be more or less arbitrary. In order to have a fixed convention, we have numbered all fundamentals in a definite class of a definite compound in accordance with the order of the first-order approximation frequencies.

Fig. 8. Planar classes of the $C_{2}^{*} v$ compounds.

In this way we probably succeed in labelling each fundamental with the number of its main component.

One of the most important properties of a fundamental vibration is its spectral activity (Raman and infrared). As a consequence of the mixing of active and inactive vibrations, the activity is distributed among all the vibrations in accordance with the mixing proportions. On the basis of the above given comments on the relation between mixing and observed shift from the first-order frequencies, it is therefore possible to give a rough estimate of the intensities of the fundamental bands in the spectrum of an intermediate compound. Such estimates, performed simply by inspection of the diagrams, have proved to be a very important help in assigning the observed frequencies.

Fig. 9. Non-planar class of the C_{s} compound.

Fig. 10. Planar class of the C_{δ} compound.

Mat.Fys.Skr. Dan.Vid. Selsk. 1, no. 7 .

Fig. 11. Frequencies 1 and 12.

Results.

The results obtained are collected in the Tables $8-18$ giving the calculated and observed fundamental frequencies together with their estimated spectral activities. Each table contains the results for one of the partly deuterated benzenes separately, arranged in the order of increasing frequencies. As already mentioned, only frequencies of observed bands interpreted as fundamentals are included in the tables. The various columns contain the following information:

The frequency number assigned in accordance with the convention discussed above (pag. 22).

The symmetry class of the fundamental frequency (cf. Table 1).
The estimated activities (see pag. 22), for Raman and infrared separately, by use of the following scale:
$\mathrm{f}=$ forbidden by selection rules,
$0=$ inactive in $D_{6 h}$, formally active in the lower-symmetrical intermediate compound, but unperturbed (not shifted from its first-order position),
$1=$ ditto, but slightly perturbed,
$2=$ ditto, but strongly perturbed, or fundamental originally active in $D_{6 h}$.
The first two groups (f and 0) are expected to be inactive; the latter two (1 and 2) should show an increasing activity in the given order. The distinction between activity 1 and 2 is of course rather vague.

As the main object of the experimental investigation was to obtain as accurate measurements of the vibrational frequencies as possible, we have found it difficult on the basis of this experimental material to find a reliable measure for the intensities, especially for the Raman lines. Furthermore it is impossible to assign an intensity to each single component of the complicated groups of overlapping bands in the infrared vapour spectra. We have therefore decided not to include any quantitative statements of observed intensities in the tables, but are referring to the discussion of the spectral activity given below (pag. 34).

The calculated frequencies (cf. pag. 15) for as well the gaseous as the liquid state. They are given in cm^{-1} without a decimal because several of the basic frequencies are not known with greater accuracy.

The observed frequencies (cf. pag. 13) for the gaseous state from the infrared spectra, and for the liquid state from both infrared spectra (I) and Raman spectra (R). If a band observed in the spectrum of the vapour has a Q-branch, the frequency given refers to the maximum of this and is in the table marked ' Q '. These frequencies are fairly reliable. All other frequencies measured in the spectra of the vapour refer to the estimated midpoints of the bands, and are consequently less accurate. The frequencies for the liquid state (peak frequencies) are normally accurate to $\pm 1 \mathrm{~cm}^{-1}$, but for the weak and broad Raman bands the error may increase to $\pm 5 \mathrm{~cm}^{-1}$. If two such bands are lying close together (as is, for instance, the case with 6 a and 6 b)
they are often not resolved. In such cases the frequency given will be a mean value of the supposed doublet.

The differences between calculated and observed frequencies. These are in the tables given for the three cases separately: vapour (I), liquid (I), and liquid (R).

Benzene-d ${ }_{1}$
Table 8.

Freq. no.	Sym. class	Estimated activity		Frequencies in cm^{-1}							
				Vapour			Liquid				
				Calc.	Obs.	Diff.	Calc.	Obs.		Diff.	
		I	R		I	I		I	R	I	R
16b	B_{2}	1	1	377			383		381		$+2$
16 a	A_{2}	f	0	398	11		404		403*		$+1$
6 b	B_{1}	1	2	598	. .		598	. .			$\int-4$
6 a	A_{1}	0	2	607	.		607	. .	602		$\{+5$
11	B_{2}	2	2	606	607 Q	-1	608	608		0	$1+6$
4	B_{2}	2	2	701	698 Q	$+3$	702	699	.	+ 3	
10b	B_{2}	2	2	776	777 Q	-1	780	779	779	0	$+1$
10 a	A_{2}	f	2	845	.		849	.	850		-1
18b	B_{1}	2	2	858	857 Q	$+1$	857	858	857	+1	0
17 b	B_{2}	2	2	923	924 Q	-1	925	926	925	$+1$	0
17 a	A_{2}	f	0	967	. .		969	. .	969*		0
1	A_{1}	0	2	983	.		982	(978	980	$\int+4$	$+2$
5	B_{2}	2	2	984	.		985) 978	.	$\{+7$	
12	A_{1}	0	2	1006	.		1006	1007	1007	-1	-1
18a	A_{1}	2	0	1037	1034 Q	$+3$	1035	1033	1032	+2	$+3$
9 b	B_{1}	2	2	1080	1077	$+3$	1079	1077	1076	$+2$	$+3$
15	B_{1}	2	2	1157	. .		1157	ca. 1159	1158	ca. -2	-1
9 a	A_{1}	0	2	1177	.		1177	ca. 1174	1177	ca. +3	0
3	B_{1}	1	1	1295	.		1294	. .	1291		$+3$
14	B_{1}	1	1	1327	\cdots		1325	.	. .		
19b	B_{1}	2	1	1446) 1440 to		1443	1448	.	-5	
19a	A_{1}	2	0	1482) 1490		1479	1473	.	$+6$	
8 b	B_{1}	1	2	1590	. .		1585	. .	1576		$+9$
8 a	A_{1}	0	2	1600	.		1595	.	1593		$+2$
7 a	A_{1}	2	2	2286	2277 Q	$+9$	2276	2269	2270	$+7$	$+6$
7 b	B_{1}	0	2					(3012			
13	A_{1}	2	2	3055			3047	- 3020			
20a	A_{1}	2	2	$\}$ to	$\{3045$		to	$\{3030$	$\} 3057$		
20 b	B_{1}	2	0	3074	3082		3062	3061	3066		
2	A_{1}	2	2					(3076			

* Extremely weak lines.
o-Benzene- d_{2}
Table 9.

m-Benzene- d_{2}

m-Benzene- d_{2}
Table 10 (continued).

Freq. no.	$\begin{aligned} & \text { Sym. } \\ & \text { clas. } \end{aligned}$	Estimated activity		Frequencies in cm^{-1}							
				Vapour			Liquid				
				Calc.	Obs.	Diff.	Calc.	Obs.		Diff.	
		I	R		I	I		I	R	I	R
18a	A_{1}	2	2	838	ca. 834	ca. +4	837	836	838	+ 1	-1
18 b	B_{1}	2	2	882	879 Q	+ 3	881	877	880	+ 4	+ 1
5	B_{2}	2	2	921	922 Q	-1	923	923	.	0	
17 a	A_{2}	f	2	924	. .		926	. .	-		
1	A_{1}	0	2	970	.		969	. \cdot	970		-1
17 b	B_{2}	2	2	976	977 Q	-1	977	ca. 977	. .	ca. 0	
12	A_{1}	0	2	1004	. .		1004	. .	1006		-2
9 b	B_{1}	2	2	1061	1052 Q	+9	1060	1051	1052	+9	+ 8
9 a	A_{1}	2	2	1099	1104 Q	-5	1098	1107	1109	-9	-11
15	B_{1}	2	2	1167	.		1167	ca. 1170	1167	ca. -3	0
3	B_{1}	1	2	1274	1277	-3	1273	1280	. .	-7	
14	B_{1}	1	2	1323	. .		1321	. .	.		
19a	A_{1}	2	1	1413	1425	-12	1410	1420	1418	-10	-8
19b	B_{1}	2	1	1467	1461	$+6$	1464	1457	. .	+ 7	
8 a	A_{1}	1	2	1586	. .		1581		1584	$\{-1$	$\{-3$
8 b	B_{1}	1	2	1594	.		1589	f 1582	f 1584	$(+7$	$1+5$
7 b	B_{1}	2	2	2282	2270 Q	+ 12	2272	2263	2270	+9	+2
7 a	A_{1}	2	2	2290	2290	0	2280	2281	2282	-1	-2
$20 \text { a }$	A_{1}	2	2	3055 to			3047 to				
20 b	B_{1}	2	2	$\begin{gathered} \text { to } \\ 3074 \end{gathered}$	3076		$\begin{gathered} \text { to } \\ 3062 \end{gathered}$	(3071	(3059		
2	A_{1}	2						(

p-Benzene- d_{2}

16b	$B_{2 u}$	1	f	358			364	\| \| \|	.		
16a	$A_{1 u}$	f	f	398			404	1	.		
6b	$B_{2 g}$	f	2	591	.		591	.	595		-4
11	$B_{2 u}$	2	f	595	596 Q	-1	597	597	.	0	
6 a	$A_{1 g}$	f	2	607	. .		607	.	599		+8
4	$B_{3 g}$	f	2	633	.		635	.	633		+ 2
10b	$B_{3 g}$	f	2	739	.		741	.	736		+5
18b	$B_{3} u$	2	f	817	818 Q	-1	815	820	.	-5	
10a	$B_{1 g}$	f	2	845			849	.	849		0
17 b	$B_{2 u}$	2	f	871	873 Q	-2	873	873	.	0	
9 b	$B_{2 g}$	f	2	913			913	908	909	+ 5	+4
5	$B_{3 g}$	f	2	957	\ldots		958	957	. .	+1	
17 a	$A_{1 u}$	f	f	967			969	. .	.		
1	$A_{1 g}$	f	2	977			977		978		-1
12	$B_{1 u}$	0	f	997	.		997		.		
18a	$B_{1 u}$	2	f	1037	1032 Q	+ 5	1035	1030		+ 5	

p-Benzene- d_{2}
Table 11 (continued).

sym-Benzene-d ${ }_{3}$

| 16 | $E^{\prime \prime}$ | f | 1 | 370 | \|||||||| | | 376 | \| | | | | | | | 375 | | +1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | $A_{2}^{\prime \prime}$ | 2 | f | 530 | 531 Q | -1 | 531 | 533 | .. | -2 | |
| 6 | E^{\prime} | 1 | 2 | 593 | 594 | -1 | 592 | ca. 592 | 594 | ca. 0 | -2 |
| 4 | $A_{2}^{\prime \prime}$ | 2 | f | 701 | 697 Q | +4 | 701 | 697 | . . | +4 | |
| 10 | $E^{\prime \prime}$ | f | 2 | 707 | . . | | 711 | ca. 714 | 711 | ca. -3 | 0 |
| 18 | E^{\prime} | 2 | 2 | 838 | 833 Q | + 5 | 837 | 833 | 834 | +4 | + 3 |
| 15 | A_{2}^{\prime} | f | f | 912 | . . | | 911 | . . | . . | | |
| 5 | $A_{2}^{\prime \prime}$ | 1 | f | 916 | 917 Q | -1 | 918 | 918 | | 0 | |
| 17 | $E^{\prime \prime}$ | f | 2 | 924 | | | 926 | . . | . . | | |
| 1 | A_{1}^{\prime} | f | 2 | 956 | . | | 955 | 955 | 956 | 0 | -1 |
| 12 | A_{1}^{\prime} | f | 2 | 1004 | . . | | 1004 | 1003 | 1004 | + 1 | 0 |
| 9 | E^{\prime} | 2 | 2 | 1099 | 1101 Q | -2 | 1098 | 1101 | 1102 | -3 | -4 |
| 3 | A_{2}^{\prime} | f | f | 1253 | - | | 1252 | . . | , | | |
| 14 | A_{2}^{\prime} | f | f | 1321 | \cdots | | 1319 | 1322 | . \cdot | | |
| 19 | E^{\prime} | 2 | 1 | 1413 | 1414 | -1 | 1410 | 1412 | 1417 | -2 | -7 |
| 8 | E^{\prime} | 1 | 2 | 1586 | 1580 | +6 | 1581 | 1575 | 1575 | +6 | + 6 |
| 7 | E^{\prime} | 2 | 2 | 2282 | 2282 | 0 | 2272 | 2274 | U2264 | -2 | |
| 13 | A_{1}^{\prime} | f | 2 | 2294 | . . | | 2285 | . | $\int 2282$ | | |
| 20 | E^{\prime} | 2 | 2 | 3055 | 3063 Q | | 3047 | 3053 | | | |
| 2 | A_{1}^{\prime} | f | 2 | 3074 | . . | | 3062 | | $)^{3054}$ | | |

vic-Benzene- d_{3}
Table 13.

as-Benzene- d_{3}
Table 14.

16a	$A^{\prime \prime}$	1	1	354			360				
16b	$A^{\prime \prime}$	1	1	383			389		388		+ 1
11	$A^{\prime \prime}$	2	2	558	558 Q	0	560	560	577	0	+ 3
6a	A^{\prime}	1	2	585			585	. .			$\int-7$
6b	A^{\prime}	1	2	602			602		592		$1+10$
4	$A^{\prime \prime}$	2	2	632	632 Q	0	633	633	633	0	0
10a	$A^{\prime \prime}$	2	2	705	706 Q	-1	708	707	706	+1	$+2$

as-Benzene- d_{3}
Table 14 (continued).

Freq. no.	Sym. class	Estimated activity		Frequencies in cm^{-1}							
				Vapour			Liquid				
				Calc.	Obs.	Diff.	Calc.	Obs.		Diff.	
		I	R		I	I		I	R	I	R
10 b	$A^{\prime \prime}$	2	2	772	773 Q	-1	775	c. 773	774	c. +2	$+1$
18 a	A^{\prime}	2	2	817	814 Q	+ 3	815	818	820	-3	-5
9 a	A^{\prime}	2	2	847	845 Q	$+2$	846	842	842	$+4$	$+4$
17 a	$A^{\prime \prime}$	2	2	861	863 Q	-2	864	864	864	0	0
5	$A^{\prime \prime}$	2	2	921	$)$	10	923	1	1 , 1	$\int+1$	$\int+2$
18b	A^{\prime}	2	2	927	\} 921 Q	$\{+6$	926	\} 922	¢c. 921	$2+4$	$1+5$
17 b	$A^{\prime \prime}$	2	2	962	963 Q	-1	964	1) 1065	. .	$\int-1$	
1	A^{\prime}	0	2	967	Q		967) 965	966	$1+2$	+ 1
12	A^{\prime}	0	2	993	.		992	985	986*	+ 7	$+6$
15	A^{\prime}	2	2	1062	1052 Q	$+10$	1061	1051	1054	$+10$	+ 7
9 b	A^{\prime}	2	2	1140	1136	$+4$	1140	1140	1140	0	0
3	A^{\prime}	2	2	1266	1262	$+4$	1263	1269	1268	-6	-5
14	A^{\prime}	1	1	1288	. .		1288	1294	. .	-6	
19a	A^{\prime}	2	2	1384	1396	-12	1382	1392	1389	-10	-7
19 b	A^{\prime}	2	2	1459	1451	$+8$	1456	1447	. .	+ 9	
8a	A^{\prime}	1	2	1570	. .		1565	. .	1556		$+9$
8b	A^{\prime}	1	2	1593	.		1588	.	1579		$+9$
7 a	A^{\prime}	2	2	2278)		2270) 2270		
7 b	A^{\prime}	2	2	2287	2279 Q		2276) 2271	(2281		
13	A^{\prime}	2	2	2292			2282) 2295		
20 a	A^{\prime}	2	2	- 3055)) 3047	$) \sqrt{3056}$			
20 b	A^{\prime}	2	2	t to	\} 3078		$\}$ to	1) 3056	33054		
2	A^{\prime}	2	2) 3074			$\int 3062$)1 3068			

* Probably in resonance with $(16 \mathrm{a}+4)$, calc. $=993$, obs. $=1004$, unobs. in infrared. The Raman line at 995 may be assigned to $(16 b+6 b)$.
o-Benzene-d ${ }_{4}$

o-Benzene- d_{4}
Table 15 (continued).

Freq. no.	$\begin{aligned} & \text { Sym. } \\ & \text { class. } \end{aligned}$	Estimated activity		Frequencies in cm^{-1}							
				Vapour			Liquid				
				Calc.	Obs.	Diff.	Calc.	Obs.		Diff.	
		I	R		I	I		I	R	I	R
18a	B_{1}	2	2	939	934 Q	+ 5	938	932	932	$+6$	$+6$
1	A_{1}	0	2	962	. .		961	962	961		0
5	A_{2}	f	2	962	.		964		
12	B_{1}	0	0	984	.		984	.	.		
9 a	A_{1}	2	2	1137	.		1136	1135	1137	+1	-1
3	B_{1}	2	2	1187	.		1183		
14	A_{1}	1	1	1286	.		1286	. \cdot	. \cdot		
19b	A_{1}	2	1	1368	1378	-10	1366	1373	1376	-7	-10
19a	B_{1}	2	2	1431	1426	+ 5	1428	1424	. .	+ 4	
8 b	B_{1}	1	2	1569	. .		1564	. .) 1571		$\int-7$
8 a	A_{1}	1	2	1581	.		1576				$1+5$
7 a	A_{1}	2	2	2278			2269				
7 b	B_{1}	2	2	2280	(${ }^{2} 2885$ Q		2271	(f 2271	$\int 2272$		
13	B_{1}	2	2	2287	(2300 Q		2276	(2289	¢ 22290		
20 b	A_{1}	2	2	2298			2288				
20 a 2	B_{1} A_{1}	2 2	2	$\left.\} \begin{array}{l}3055 \mathrm{to} \\ 3074\end{array}\right\}$	3068		$)_{3}^{3047} \begin{gathered}\text { to } \\ 3062\end{gathered}$	$\} 3056$	$\} 3058$		

m-Benzene- d_{4}

16b	B_{2}	1	1	352			358		.		
16a	A_{2}	f	1	370	,		376		376		0
11	B_{2}	2	2	523	524 Q	-1	524	524		0	
6b	B_{1}	1	2	584	. .		584	. .) 588		f -4
6a	A_{1}	1	2	593	.		592	.) 588		$1+4$
4	B_{2}	2	2	631	630 Q	+ 1	633	633	633	0	0
10b	B_{2}	2	2	705	705 Q	0	708	706		+2	$\int-2$
10a	A_{2}	f	2	707			711	.			$1+1$
17 b	B_{2}	2	2	805	806 Q	-1	807	806	. .	+1	
15	B_{1}	2	2	817	818 Q	-1	815	817	.	-2	
18a	A_{1}	2	2	838	833 Q	+ 5	837	831	834	+6	+ 3
18b	B_{1}	2	2	854	. .		854	.	848		+ 6
5	B_{2}	2	2	918	919 Q	-1	920	920	.	0	
17 a	A_{2}	f	2	924	. .		926	.	\cdots		
9 b	B_{1}	2	2	950	.		948	946	.	$+2$	
1	A_{1}	0	2	954	\cdots		954		954		0
12	A_{1}	0	2	991	.		991		993*		-2
9 a	A_{1}	2	2	1099	1097 Q	$+2$	1098	1096	1097	+2	+ 1
3	B_{1}	1	2	1216			1213	. .	c. 1206		c. +7
14	B_{1}	1	1	1288			1288				

* In resonance with $(16 \mathrm{~b}+4)$, calc. $=991$, obs. $=987$.
m-Benzene- d_{4}
Table 16 (continued).

p-Benzene-d ${ }_{4}$

Benzene-d 5
Table 18.

Freq. no.	Sym. class	Estimated activity		Frequencies in cm^{-1}							
				Vapour			Liquid				
				Calc.	Obs.	Diff.	Calc.	Obs.		Diff.	
		I	R		1	I		1	R	I	R
16a	A_{2}	f	0	345			351		..		
16b	B_{2}	1	1	360	1		366		367		-1
11	B_{2}	2	2	512	512 Q	0	513	514	. .	-1	
6a	A_{1}	0	2	579	. .		579	. .	.		-5
6b	B_{1}	1	2	589	.		588	.	584		$+4$
4	B_{2}	2	2	613	613 Q	0	613	614	613	-1	0
10a	A_{2}	f	2	659	.		663	.	664		-1
10b	B_{2}	2	2	706	706 Q	0	710	709	711	+ 1	-1
17 a	A_{2}	f	0	787	. .		789		
18a	A_{1}	2	0	814		$\int-4$	812			$\int-2$	
15	B_{1}	2	2	820	818 Q	+ +2	818	814		+ 4	$\int+3$
17b	B_{2}	2	2	818		0	820		\} 815	$1+6$	$\{+5$
18b	B_{1}	2	2	846	.		845	838	840	$+7$	+5
9 a	A_{1}	0	2	868	.		868	. .	859		+ 9
5	B_{2}	2	2	921	922 Q	-1	923	923	928	0	-5
1	A_{1}	0	2	951	. .		951	. .	950		+1
12	A_{1}	0	2	979	.		979	.	980		- 1
9b	B_{1}	2	2	989	986 Q	$+3$	987	984	. .	$+3$	
3	B_{1}	1	2	1172	. .		1169	. .	1175		-6
14	B_{1}	1	1	1284	.		1284	1289*	. .	-5	
19a	A_{1}	2	0	1333	1344	-11	1330	1341	.	-11	
19b	B_{1}	2	1	1400	1392	+ 8	1397	1388		+ 9	
8 a	A_{1}	0	2	1558	. .		1553	. .			$\int-11$
8 b	B_{1}	1	2	1576	. .		1571	.	f 1564		$\{+7$
7 b	B_{1}	0	2	2275			2267				$\int-4$
7 a	A_{1}	2	2	2280		$\int-3$	2271		2271	$\int-4$	0
13	A_{1}	2	2	2286	2283	$\{+3$	2275	2275		$\{0$	+ 4
20 b	B_{1}	2	0	2288		$1+5$	2276		. .	+1	
20a	A_{1}	2	2	2300	c. 2302	c. -2	2291	2291	2289	0	$+2$
2	A_{1}	2	2	$\begin{gathered} 3055 \text { to } \\ 3074 \end{gathered}$	3046		$\begin{gathered} 3047 \text { to } \\ 3062 \end{gathered}$	3050	3053		

* May equally well be assigned to $(16 \mathrm{~b}+5)$, calc. $=1289$.

Discussion.

The agreement between calculated and observed frequencies can not be expected to be equally good for all the fundamental vibrations. For the non-planar vibrations, where the rules are strictly valid, the agreement is excellent, practically within the experimental error. Especially the fine agreement with the very reliable Q-branch frequencies measured for the gaseous state should be pointed out. Here the mean deviation is $1 \mathrm{~cm}^{-1}$ only.

For the planar vibrations we have, in addition to the usual neglect of anharmonicity, introduced the approximation of separating the high and the low frequencies. We should therefore expect a poorer agreement between calculated and observed values. Nevertheless, many frequencies are calculated correctly within a few cm^{-1}. All the greater deviations may be accounted for in one of the following two ways:

1. Accidental resonance with over-or combination-tones may perturb the fundamentals. As the probability for this phenomenon is rapidly increasing with increasing frequency, the assigned frequencies for the high fundamental frequencies are only to be considered as tentative.
2. The low frequencies, $6,8,9,18$, and 19, may correspond to vibrations, which involve a considerable portion of radial motion of the hydrogen (deuterium) atoms (cf. pag. 13). To a first approximation this tends to permute the calculated frequencies of the a and b components. No such tendency is, however, observed for 9 and 18, and the fundamentals mixed strongly with these are also calculated correctly. This means that the vibrations 9 and 18 practically are pure deformations. The frequencies 6, 8 , and 19, however, are in most cases observed within the interval between the frequencies calculated for the two components, a and b. This indicates that these vibrations are not pure deformations. We estimate their 'content' of stretching mode to be about 50,20 , and 10 per cent. for 6,8 , and 19 respectively. We must, therefore, emphasize that the assignments given for the observed frequencies to one or the other of the two components are to be considered as more or less tentative. This is especially the case for 6, and to some extent also for 8 . For 19, however, a permutation of the given assignments would probably require too large changes to be made for other frequencies to be compatible with the observed spectra.

The very satisfactory general agreement obtained for all the frequencies of all the deuterated benzenes gives, in our opinion, the final proof of the correctness of the fundamental frequencies of benzene- d_{0} and benzene- d_{6} used as the basis for the calculations.

As already mentioned we do not consider our present experimental material to be suitable for quantitative statements of the intensities of the observed fundamentals. We shall, therefore, confine ourselves to the following general discussion.

Qualitatively the observed intensities agree very well with the estimated ones given in the Tables $8-18$ (cp. pag. 24). Thus it is seen that the frequencies in inactive classes (f), as well as the frequencies unperturbed by active fundamentals (0), are in fact unobserved in the spectra. Only in a few cases are such frequencies-activated by intermolecular perturbations-observed in the infrared spectra of the liquid phase, and then always as very weak bands only.

Furthermore, it is evident that fundamentals which are only slightly perturbed (1), in most cases escape observation. For the typical carbon vibration 14 this means, that infrared activity is only to be expected in the few instances where a component of the infrared active 19 is relatively nearby in the first-order approximation. Raman activity is never to be expected, as there is no Raman active frequency in the
vicinity in any of the partly deuterated benzenes. Any resonance that may arise with the nearby 3 is of no importance in this connection as 3 is both infrared and Raman inactive. This is undoubtedly the reason why the $B_{1 u}$ fundamental 14 so long has eluded the correct assignment.

The rough estimate of the activity, based on a fundamental's observed deviation from its first-order position, may be of valuable help in the interpretation of the spectra. It must, however, be emphazised that the intensity by no means is proportional to the difference between observed and first-order frequency. If more than two frequencies are strongly involved in the interaction, which very often is the case, the

Fig. 12. Frequencies 1 and 12.
First-order approximation: thin lines, calculated: medium lines, and observed: heavy lines.
situation may be rather complicated. A limiting case would be a fundamental appearing in the spectrum at its first-order frequency in spite of strong, simultaneous interactions with other fundamentals if these interactions cancel by accident. In this case the fundamental may possibly show an appreciable intensity even if it -as far as the frequency is concerned-is unperturbed. A certain caution must, therefore, be exercised in the application of this intensity estimate.

In Fig. 12 are shown both the first-order approximation, the calculated, and the observed frequencies for 1 and 12. This special diagram may be compared with the analogous one given in 1938 by Langseth and Lord ${ }^{1}$. It nicely demonstrates how 12 is only active as a consequence of resonance with 1 , in which case the calculated frequencies deviate from the first-order approximation values. In two cases 12 further is in resonance with combination vibrations as indicated in the tables.

Conclusion.

From the material presented in this paper, as well as from the examples discussed in I, it is seen that the complete isotopic rule is able to predict the fundamental frequencies of intermediate isotopic species with a remarcable accuracy.

The main application of the rule will probably be as a help to the interpretation of vibrational spectra. For all cases in which the complete rule is valid, strictly or approximately, the calculation of the frequencies of one or more intermediate compounds will give a check on the correctness of the assignment which has hitherto been

[^4]lacking. Even in cases where the complete rule can not be applied, a useful knowledge the behavior of the fundamentals by varying isotopic substitution may be gained from the use of the rule to similar molecules. In this connection the survey obtained by use of the first-order approximation and the diagrams may be pointed out.

In the view of the approximations introduced as a basis for the approximate rule-harmonicity and separation of low and high frequencies-the accuracy of the rule is surprising. As already mentioned, this is-at least as far as the harmonicity in concerned-to some extent accounted for by the nature of the rule, being in reality a kind of interpolation between two sets of observed frequencies. If only the effect of the anharmonicity varies 'linearly' within the interval in question, the errors will tend to cancel. Therefore, no conclusions with regard to the real magnitude of the introduced approximation can safely be drawn.

These circumstances have an important bearing on the problem of calculating the potential function from the observed frequencies. It is obvious that an intermediate compound, the frequencies of which are given by strictly valid rules from the frequencies of the full-symmetry compounds, do not contribute any new information concerning the potential function. But also in those cases where an approximate rule is valid, the frequencies of the intermediate compound are of problematic value for such calculations. In both cases, however, the rule may be used to calculate the unperturbed frequencies of fundamentals which are involved in Fermi resonance with other frequencies.

The existence of the complete isotopic rule reveals a general complementarity principle with regard to the fundamental frequencies of the various isotopic species: to the same extent as the importance of these frequencies for the calculation of the potential function may be decreasing, to the same extent their importance for assignment purposes will be increasing.

Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Skrifter
 Mat. Fys. Skr. Dan. Vid. Selsk.
 Bind 1
 (uafsluttet/in preparation) kr. e.

2. Nörlund, N. E.: Sur les fonctions hypergéométriques d'ordre supérieur. 1956 . . 15,00
3. Fröman, Per Olof: Alpha Decay of Deformed Nuclei. 1957. 20,00
4. Brodersen, Svend: A Simplified Procedure for Calculating the Complete Har-
monic Potential Function of a Molecule from the Vibrational Frequencies. 195710,00

6. Källén, G., and Wightman, A.: The Analytic Properties of the Vacuum Ex-
pectation Value of a Product of three Scalar Local Fields. 1958............... 15,00
7. Brodersen, Svend, and Langseth, A.: The Fundamental Frequencies of all the
Deuterated Benzenes. Application of the Complete Isotopic Rule to New Experi-
mental Data. $1959 \ldots \ldots . \ldots$... 100
8. Mottelson, Ben R., and Nilsson, Sven Gösta: The Intrinsic States of Odd-A
Nuclei having Ellipsoidal Equilibrium Shape. 1959...........................22,00
9. Källén, G., and Wilhelmsson, H.: Generalized Singular Functions. 1959..... 6,00

Formerly was published:
Niels Bjerrum: Selected Papers. Edited by Friends and Coworkers. Copenhagen 1949. 295 pages. Bound . 18,00

This publication is sold by the agent of the Academy, and it is not obtainable on an exchange basis.

On direct application to the agent of the Academy, Ejnar Munksgaard, Publishers, 6 Nörregade, Köbenhavn K., a subscription may be taken out for the series Matematiskfysiske Skrifter. This subscription automatically includes the Matematisk-fysiske Meddelelser in 8 vo as well, since the Meddelelser and the Skrifter differ only in size, not in subject matter. Papers with large formulae, tables, plates etc., will as a rule be published in the Skrifter, in 4to.

For subscribers or others who wish to receive only those publications which deal with a single group of subjects, a special arrangement may be made with the agent of the Academy to obtain the published papers included under one or more of the following heads: Mathematics, Physics, Chemistry, Aslronomy, Geology.

In order to simplify library cataloguing and reference work, these publications will appear without any special designation as to subject. On the cover of each, however, there will appear a list of the most recent paper dealing with the same subject.

The last published numbers of Matematisk-fysiske Skrifter within the group of Chemistry are the following:

Vol. 1, nos. 1, 4-5, 7.

[^0]: ${ }^{1}$ Svend Brodersen and A. Langseth, Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 1, p. 43 (1956).
 ${ }^{2}$ Id., ibid. 1, no. 5 (1958).
 3 A. Langseth and R. C. Lord, Mat. Fys. Medd. Dan. Vid. Selsk. 16, no. 6 (1938).

[^1]: E B Wilson, Phys. Rev. 45, 706 (1934).
 2 A. Langseth and R. C. Lord, loc. cit.
 ${ }^{3}$ Svend Brodersen, Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 4 (1954).

[^2]: ${ }^{1}$ Svend Brodersen and A. Langeth, Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 1 (1956).
 ${ }^{2}$ Svend Brodersen, N. Groving, A. Langseth, and E. Madsen, unpublished work.
 ${ }^{3}$ A. Langseth and R. C. Lord, Mat. Fys. Medd. Dan. Vid. Selsk. 16, no. 6 (1938).
 ${ }^{4}$ A. Langseth and A. Klit, ibid. 15, no. 13 (1938).

[^3]: Mat.Fys.Skr. Dan.Vid.Selsk. 1, no.7.

[^4]: ${ }^{1}$ A. Langseth and R. C. Lord, Jr., loc. cit., Fig. 3, pag. 27.

